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ABSTRACT: Developing reliable methods for representing and managing information uncertainty 
remains a persistent and relevant challenge to GIScience. Information uncertainty is an intricate idea, 
and recent examinations of this concept have generated many perspectives on its representation and 
visualization, with perspectives emerging from a wide range of disciplines and application contexts. 
In this paper, we review and assess progress toward visual tools and methods to help analysts manage 
and understand information uncertainty. Specifically, we report on efforts to conceptualize uncertainty, 
decision making with uncertainty, frameworks for representing uncertainty, visual representation 
and user control of displays of information uncertainty, and evaluative efforts to assess the use and 
usability of visual displays of uncertainty. We conclude by identifying seven key research challenges 
in visualizing information uncertainty, particularly as it applies to decision making and analysis.
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Introduction

Information uncertainty is a complex 
concept with many interpretations across 
knowledge domains and application con-

texts. Efforts to develop visualization methods 
and tools that can help information analysts 
understand and cope with information uncer-
tainty have been underway for more than a 
decade. Uncertainty in geospatial information 
has been given particular attention. Progress 
has been made, but that progress is reported 
in diverse outlets across many disciplines. As a 
result, we do not have a comprehensive under-
standing of the parameters that influence suc-
cessful uncertainty visualization, nor is it easy to 
determine how close we are to achieving such 
an understanding. In turn, without this under-
standing, effective approaches to visualizing 
information uncertainty to support real-world 
geospatial information analysis remain elusive. 

This paper integrates perspectives on visual-
izing uncertainty with those on how to cope with 
uncertainty in information analysis and decision 

making. Visualizing uncertainty, of course, requires 
that uncertainty be measured or otherwise assessed 
and encoded; and there is a substantial volume of 
literature in GIScience and related fields focused 
on this problem, including focused research on 
computing and propagating uncertainty (Veregin 
1995; Worboys 1998) as well as comprehensive texts 
and edited collections (Foody and Atkinson 2002; 
Goodchild and Gopal 1989; Zhang and Goodchild 
2002). We do not attempt in this single paper to 
review that literature comprehensively, although 
we draw upon it selectively to support our main 
goal. That goal is to characterize the status of 
geospatial uncertainty visualization science and 
practice, thus to review and assess knowledge 
about visual methods and tools that help ana-
lysts and decision makers cope with geospatial 
information uncertainty. Drawing upon this review 
and assessment, we conclude by identifying key 
research challenges in visualization of geospatial 
information uncertainty, particularly to support 
analysis and decision making.

Status of Geospatial Uncertainty 
Visualization Science and 

Practice
This section of the paper will introduce five com-
ponents of current understanding of information 
uncertainty and its visualization; emphasis is given 
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to information uncertainty in a geospatial con-
text. Specifically, we address efforts to concep-
tualize uncertainty generally, decision making 
with uncertainty and how it has been or might 
be supported visually, categories of and frame-
works for representing information uncertainty, 
methods for visually representing and interact-
ing with information uncertainty, and efforts to 
understand and assess the usability and utility of 
uncertainty visualization methods. 

Conceptualizing Uncertainty
Good science requires statements of accuracy by 
which the reliability of results can be understood 
and communicated. When inaccuracy is known 
objectively, it can be expressed as error; when it is 
not known, the term uncertainty applies (Hunter 
and Goodchild 1993). Thus uncertainty covers 
a broader range of doubt or inconsistency than 
error alone and, in the context of this paper, 
includes the concepts of accuracy and error as 
components. 

According to Buttenfield (1993) there are two 
general philosophies regarding uncertainty repre-
sentation: that one can represent the good aspects 
of data certainty by reporting accuracy, and that 
one can represent the bad aspects of uncertainty 
by reporting error. Accuracy seems to be the 
preferred medium of communication, perhaps 
because it implies to the user that the data are 
reliable. Buttenfield (1993) cites three impedi-
ments to effective uncertainty representation. First, 
most discussion of uncertainty involves ambiguous 
terminology; uncertainty itself is an ill-defined 
concept, with distinction between it and related 
concepts such as data quality, reliability, accuracy, 
and error often remaining ambiguous. Thus, there 
is a need to explore and formalize the concepts and 
terms that underlie consideration of uncertainty 
as it relates to analysis and use of geospatial and 
other data. Second, we lack methods for measur-
ing and representing many aspects of uncertainty 
in a GIS database. Third, we lack methods for 
depicting uncertainty simultaneously with data 
and interacting with those depictions in ways that 
are understandable, useful, and usable.

Many researchers have addressed specific aspects 
of the assessment and encoding of geospatial uncer-
tainty information. In work focused explicitly on 
uncertainty visualization, Pang et al. (1997) delin-
eated three types of uncertainty related to stages 
in a visualization pipeline: collection uncertainty 
due to measurements and models in the acqui-
sition process, derived uncertainty arising from 

data transformations, and visualization uncertainty 
introduced during the process of data-to-display 
mapping. In complementary work, Plewe (2002), 
concentrating on uncertainty in temporal geospatial 
data, proposed a model that distinguishes between 
uncertainty resulting from the process of concep-
tualizing a phenomenon and that resulting from 
measurement based on that conceptualization. 
Lowell (1997) focused specifically on the process 
of generating and handling geospatial uncertainty 
information. His “outside-in” method involves 
creating an Uncertainty Library by cataloging 
multiple interpretations of phenomena, then 
using this to estimate uncertainty based on vari-
ance among the interpretations. The “inside-out” 
method first depicts the certain places, then uses 
interpolation methods to estimate uncertainty of 
other locations based on distance from those that 
are certain. A related idea offered by Couclelis 
(2003) is a conceptual “Encyclopedia of Ignorance.” 
The core idea here is to catalog what is unknow-
able, so that attention is directed to the “tractable 
forms of not knowing.” 

Decision Making with Uncertainty 
Information uncertainty affects the process and 
outcomes of information analysis and decision 
making. Uncertain situations often result in a 
bias toward initial potential solutions (Kobus 
et al. 2001), undervaluing negative evidence 
(Reece and Matthews 1993) and overvaluing 
past positive outcomes (Cohen and Wallsten 
1992). Expert decision makers tend to respond 
to uncertainty by incorporating probabilities 
representing that uncertainty into mathemati-
cal equations that allow them to determine 
the “best” answer to a problem. Naïve decision 
makers, on the other hand, tend to rely on past 
experiences and stereotypes when dealing with 
an uncertain situation. 

There is general agreement that uncertainty 
affects the decisions we make. The literature on 
decision making with uncertainty is extensive, and 
thus it is impractical to review comprehensively 
here. We focus on the role of uncertainty in geo-
graphic decisions and, more specifically, on the 
role of maps and uncertainty representation in 
that decision making. We first review concepts of 
expert and lay decision making, then explore the 
existing research on cartographically supported 
decision making under uncertainty. Some of the 
limited research available on map readers’ use of 
cartographic representations of data uncertainty, 
reviewed below, suggests that inclusion of this infor-
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mation is helpful to decision makers (Evans et al. 
1999; Leitner and Buttenfield 2000; St. John et al. 
2000); however, there is little real-world verifica-
tion for this tentative result. Instead, the research 
seems to take for granted that visual depictions of 
uncertainty are useful for decision making.

Particular attention has been given to the role 
of uncertainty and its visual representation in 
the domain of environmental decision making. 
Professional fields dealing with the natural envi-
ronment routinely require their practitioners to 
make decisions using data that can include a 
range of uncertainties. For example, analyses in 
the field of wildlife conservation are often based 
on relatively small samples of data having large 
variability. Nevertheless, policy decisions must 
be made in spite of this uncertainty, and conser-
vationists have developed a number of ways to 
accomplish this.

Most environmental policy decisions must be 
based on imperfect, thus uncertain, information, 
and multiple authors have focused on strategies for 
taking uncertainty into account (Dreschler 2004; 
Taylor. et al. 2000). In one specific example, Todd 
and Burgman (1998) described how methods for 
assigning species to categories of risk in Australia 
involve combining multiple criteria that include 
demographic, life history, and management vari-
ables relevant to each species. Assigning species 
to categories within each variable is a process 
that mixes multiple uncertainties, e.g., the task 
of determining how many individuals of a species 
exist in a particular area and their population 
trend are both typically based on samples that may 
have large confidence bounds. To address these 
uncertainties, Todd and Burgman (1998) proposed 
a fuzzy sets approach that can integrate multiple 
uncertainties related to each species. They also 
discussed the potential implications of including 
this information for management decisions about 
threatened species. Silviculturalists face similar 
challenges in dealing with uncertainty as it relates 
to decisions about managing and harvesting trees. 
They must, for example, include uncertain stochastic 
events such as wildfire, insect outbreaks, changing 
public values, and changing economic situations, 
into these decisions. In this context, Ducey (2001) 
promoted the use of the Dempster-Shafer theory 
of evidence as a method for handling imprecise 
probabilities of these events. 

Analytical methods such as those outlined 
above are becoming common decision-making 
tools. However, humans are typically not adept 
at using statistical information in the process 
of making decisions. Tversky and Kahneman 

(1974) proposed and demonstrated that lay 
people usually depend on heuristics rather than 
statistics when making decisions under uncertainty. 
They focused specifically on situations in which 
the decision maker is not provided with all the 
information needed to make an accurate decision, 
which is a common situation for geographic ana-
lysts across a range of application domains from 
environmental management decisions, through 
crisis management, to intelligence analysis. They 
found that heuristics were frequently the basis of 
the decision-making process, e.g., subjects in their 
experiments used stereotyped representations as 
a basis of decision making when they were asked 
to identify an individual’s occupation, even when 
the stereotype was unlikely to be right, based on 
the statistical information provided.

Tversky and Kahneman’s (1974) research can 
be applied to understanding how map readers 
use uncertainty information in decision making, 
specifically because it suggests a conflict: some 
experts are dependent on statistical analyses to 
incorporate uncertainty into their decisions, but 
lay users tend to ignore or misinterpret statisti-
cal probabilities and instead rely on less accurate 
heuristics when making decisions. This divergence 
prompts several questions: (1) will experts revert 
to lay strategies of applying heuristics when sta-
tistical evidence is not available; (2) will providing 
information about data uncertainty in an explicit 
visual way help a lay or expert map reader make 
different decisions; and (3) if they do make different 
decisions, will provision of information about data 
uncertainty lead to better, more correct, decisions 
or simply cause analysts to discount the unreliable 
information, whether doing so is the best strat-
egy or not. MacEachren (1992) raised a similar 
issue, wondering whether inclusion of uncertainty 
information and/or its mode of presentation may 
cause map readers to miss important patterns and 
relationships between data or see others that do 
not really exist.

As noted above, the limited research available 
on map readers’ use of cartographic representa-
tion of data uncertainty suggests that inclusion 
of this information is helpful to decision makers 
(Evans et al. 1999; Leitner and Buttenfield 2000). 
Agumya and Hunter (2002), however, noted that 
the current focus of research involving represen-
tations of geographic data uncertainty seems to 
be centered on methods to create the representa-
tions, rather than on how those displays can aid a 
user in making better decisions. To address this 
deficiency, they applied formal risk management 
methods to develop an approach for managing 
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the impact of geographical data uncertainty within 
the decision-making process. Specifically, their 
approach involves propagating data uncertainty 
into decision uncertainty measures, then conduct-
ing formal risk scenario identification and analysis 
that considers the risk in decisions that derive 
from uncertainty. Agumya and Hunter (2002) 
give specific examples of methods for reducing 
the risk of a decision that relate to the concept 
of insurance; these methods include the practice 
of self-insurance where an individual accepts the 
risk and sets aside resources to cope with it and 
the transfer of risk from one entity to another, 
either through a non-insurance contractual agree-
ment such as a guarantee or through a purchased 
insurance agreement. They did not test their risk 
analysis approach to uncertainty with users, how-
ever. They also did not address the problem of 
how to signify risk to decision makers.

Cliburn et al. (2002) addressed more specifically 
the idea of making decisions based on uncertain 
data with the help of uncertainty representations. 
As discussed further below, they designed a system 
to display the results and uncertainty in results of 
a global water balance model using data estimates 
from global circulation models as inputs. Their 
ultimate objective was a system that policy makers 
could use to make informed decisions. With this 
goal in mind, they developed and tested meth-
ods of simultaneously representing cartographic 
water balance data and uncertainty of the data. 
Domain and usability experts in their initial 
tests thought that the tool was generally helpful. 
However, they listed the depiction of uncertainty 
as a drawback, because policy makers typically 
want issues presented with no ambiguity—i.e., is 
the future global water balance a problem or not? 
One participant in their study suggested that a 
depiction of uncertainty could be used to discredit 
the models rather than having the intended effect 
of signaling unbiased results. 

As in science and environmental policy, intel-
ligence analysts in the field of national security 
deal with uncertainty in a wide variety of forms. 
Davis (2002) writes that “the central task of intel-
ligence analysis is to help U.S. officials…deal more 
effectively with substantive uncertainty.” Sources 
of uncertainty may include gaps or weaknesses in 
collection capabilities (Lowenthal 2003), process-
ing transformation such as language translation, 
and credibility of the information source (Krizan 
1999). 

The intelligence analysis process can be character-
ized as a progression where the analyst’s certainty 
grows over time until it reaches a level where the 

analyst is able to produce a warning or other report 
with a high degree of confidence (Graves 2000). 
Graves depicts this process as a graph, where the 
x-axis represents time and the y-axis represents 
certainty (Figure 1). A curve shows the grow-
ing certainty over time as an event approaches. 
Intelligence analysis works to raise the slope of 
the curve, while the opponents’ efforts, character-
ized as ambiguity and deception, work to lower 
the slope. If the curve reaches the appropriate 
confidence level prior to an event (shown in the 
graph as the Recognition level), warning is given. 
If the opposing forces succeed in keeping certainty 
too low for a warning until after the event, then 
decision makers are surprised. 

In related work, Kobus et al. (2001) looked 
simultaneously at the effects of uncertainty and 
experience on immediate decision making. The 
context was tactical military operations, where 
officers must make crucial decisions, often with 
new information arriving continuously. They 
characterized this kind of dynamic task con-
text as involving “an intuitive decision-making 
strategy.” They argued that this kind of intuitive 
decision making is characteristic of a naturalistic 
decision-making perspective rather than the ana-
lytical decision-making perspective focused on in 
military training. This distinction is relevant to 
consideration of kinds of uncertainty to depict as 
well as how to depict it; both of these are discussed 
in sections below.

Typology of Uncertainty 
Uncertainty is a complex, multifaceted concept 
but this complexity has often been ignored in 

Figure 1. Impact of ambiguity and deception on success 
of intelligence analysis. [After Graves (2000); reproduced 
by permission.]
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efforts to visualize uncertainty. The literature 
on decision making under uncertainty reviewed 
above provides a starting point for addressing 
the complexity of information uncertainty. This 
literature makes it clear that there are a variety 
of kinds of uncertainty that decision makers 
must face and that, to be useful, representations 
of uncertainty, visual or other, must address this 
variety. As a step in this direction, several efforts 
have been made to delineate the components of 
information uncertainty and relate them spe-
cifically to visual representation methods. These 
efforts have proceeded somewhat in parallel 
with limited sharing of ideas in the Geographic 
Visualization/Geographic Information Science 
(geovisualization/GIScience) and the Scientific 
Visualization/Information Visualization (SciVis/
InfoVis) communities. Each will be discussed briefly, 
particularly as they relate to the development of 
a typology of geospatially referenced information 
uncertainty and its visualization that some authors 
of this paper participated in.

Geovisualization/GIScience

One of the earliest conceptual frameworks for 
geospatial uncertainty, recognizing the separate 
error components of value, space, time, consis-
tency and completeness, was proposed by Sinton 
(1978) and later elaborated by Chrisman (1991). 
Uncertainty in geographic data has subsequently 
been described in a variety of alternative ways; 
such as those provided by Bedard (1987), Miller 
et al. (1989) and Veregin (1989). Although dif-
ferent, these approaches all have a number of 
aspects in common; including the observation 
that uncertainty itself occurs at different levels 
of abstraction. 

Most of the efforts to formalize an approach to 
uncertainty visualization within geovisualization 
(and GIScience more generally) derive from long-
term work on spatial data transfer standards (SDTS) 
(Fegeas et al. 1992; Moellering 1994; Morrison 
1988). The focus of the initial SDTS effort was on 
specifying categories of “data quality” which were 
to be encoded as part of the metadata for carto-
graphic data sets (later expanded to geographic 
data sets more generally), whether they were used 
to support mapping or not. The categories of data 
quality defined as part of the SDTS are: 
• Lineage: a description of the source mate-

rial from which the data were derived and 
the methods of derivation, including all 
transformations involved in producing the 
final digital files (USGS 1997, p. 15);

• Positional accuracy: must include the 
degree of compliance to the spatial registra-
tion standard; measures can include: deduc-
tive estimate, internal evidence, comparison 
to source, or independent source of higher 
authority (USGS, 1997, p. 15);

• Attribute accuracy: both measurement 
accuracy (for features measured on a con-
tinuous scale) and class assignment accuracy 
(for categorical features) are included here 
(USGS 1997, p. 16);

• Logical consistency: here, the objective 
is to describe the fidelity of relationships 
encoded in the data structure of the digital 
spatial data (USGS 1997, p. 16);

• Completeness: the goal here is to describe 
the relationship between the objects repre-
sented and the abstract universe of all such 
objects. Includes issues such as selection cri-
teria (e.g., size thresholds for spatial features, 
frequency counts for attributes), definitions 
used, and other mapping/abstraction rules 
(USGS 1997, p. 17). 

Buttenfield and Weibel (1988) were among 
the first to attempt a framework for categorizing 
components of “data quality” with a specific focus 
on their cartographic representation (Figure 2). 
Their approach matched the five categories of 
data quality from the SDTS with three data types: 
discrete, for point and line features; categorical, 
for area features assigned to categories through 
aggregation, and overlay or attributes assigned 
to classes through partitioning and enumeration; 
and continuous, for surfaces and volumes. For 
each cell in the resulting matrix, they focused 
on which “visual variables” were most appropri-
ate to depict the category. MacEachren (1992; 
1994) addressed related issues in his discussions 
of the representation of certainty and the quality 
of the resulting data representation. He added 
specific attention to information precision, as 
distinguished from accuracy, and focused on 
matching kinds of uncertainty to Sinton’s (1978) 
distinction among location, attribute, and time 
components of data. Buttenfield and Beard (1994) 
also extended Buttenfield and Weibel’s (1988) 
initial framework to include location, attribute, 
and time components (termed locational, thematic, 
and temporal). They dropped consideration of 
logical consistency and completeness, combined 
the two accuracy components into one, and added 
resolution as another component. 

In related work, Gahegan and Ehlers (2000) 
focused on modeling uncertainty within the con-
text of fusing activities between GIS and remote 
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sensing. Their approach matched five types of 
uncertainty—data/value error/precision, space 
error/precision, time error/precision, consistency, and 
completeness—against four models of geographic 
space: field, image, thematic, and object, as shown 
in Table 1.

Thus, they merged the location, attribute, and 
time distinctions discussed above with types of 
uncertainty, while focusing on the implications of 
the different approaches to modeling geographic 
space. A particular emphasis in their work was on 
error and uncertainty propagation.

Scientific Visualization/Information 
Visualization

Visualization of uncertainty or reliability has been 
a topic of attention for several researchers within 
the SciVis (Cedilnik & Rheingans 2000; Johnson & 
Sanderson 2003; Lodha et al. 1996a) and InfoVis 
(Gershon 1992) communities, and some of this 

work has been explicitly geospatial (Wittenbrink 
1995; Dungan et al. 2003). In spite of the wide 
array of visualization methods proposed there 
seems to have been less attention to formalizing 
approaches to uncertainty within these communi-
ties than there has been within the geovisualization/
GIScience communities. Perhaps the specific atten-
tion within the latter communities to issues of 
database representation, metadata standards, and 
application of geospatial information is responsible 
for the increased attention to formalization. Within 
SciVis/InfoVis, however, there are at least two 
important contributions that focus on formalizing 
an approach to uncertainty visualization. Each is 
discussed below briefly.

Pang et al. (1997) took a systematic approach 
to methods for visualizing uncertainty; while they 
provide geospatial examples, their focus covers a 
wide range of data types. They produced a clas-
sification of methods for uncertainty visualization 
that matches data type (scalar, multivariate, vector, 

Figure 2. Buttenfield and Weibel’s (1988) initial framework for matching types of uncertainty, kinds of data, and methods 
of representation. Characterization of representation methods focuses on matching visual variables to kinds of data/
uncertainty. Forms of representation are also mentioned, but not systematically addressed (e.g., use of error ellipses, 
production of prism maps, addition of marginalia). [Modified from a version appearing in Buttenfield (1991); reproduced 
with author’s permission.]
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and tensor) to visualization form (discrete and 
continuous). For each of the eight cells in the 
resulting matrix (e.g., continuous scalar data, 
discrete multivariate data), they proposed some 
logical representation methods, including both 
static and dynamic representation forms. 

From an InfoVis rather than SciVis perspective, 
Gershon (1998) took a very different approach 
than Pang, focusing on kinds of “imperfection” in 
the information about which an analyst or decision 
maker might need to know. His argument is that 
imperfect information, while involving uncertainty, 
is more complex than typically considered from the 
viewpoint of uncertainty alone. Figure 3 depicts 
Gershon’s (1998, p. 43) “high-level taxonomy of 
causes for imperfect knowledge of the information 
state.” Two important points are that (1) uncer-
tainty is considered to be just one of six inputs 
to interpretation of, and decision making with, 
imperfect information; and that (2) the quality 
of the presentation is a critical factor, a point also 
made by MacEachren (1994; 1995). The argument 
being made in point number two above is that 
standard graphic and cartographic guidelines for 
effective and logical symbolization, i.e., data to 
display mappings, and for clear graphic design 
apply to uncertainty visualization. Thus, with poor 
symbolization or design choices, our uncertainty 
visualization could lead to more rather than less 
uncertainty about the data depicted.

Typology of Geospatial Intelligence Information 
Uncertainty

Building on the typology efforts above, three 
of the current authors and two additional col-
leagues propose a typology of uncertainty rel-
evant to geospatial information visualization in 
the context of intelligence analysis (Thomson 
et al. 2004). The typology integrates key ele-
ments from those outlined above and extends 
them by adding three categories of uncertainty 
that are particularly important in the context of 
intelligence information assessment, credibility, 
subjectivity, and interrelatedness. The result is 

Table 1. Types of uncertainty in four models of geographic space (Source: Gahegan and Ehlers, 2000)

Field Image Thematic Object

Data or value
Measurement error 

and precision

Quantization of value in 
terms of spectral bands 

and dynamic range

Labeling uncertainty 
(classification error)

Identity error (incorrect 
assignment of object type), 
object definition uncertainty

Space
Locational error and 

precision
Registration error, 

sampling precision

Combination effects when data 
represented by different spatial 

properties are combined

Object shape error, 
topological inconsistency, 
‘split and merge’ errors

Time
Temporal error and 

precision

(Temporal error and 
precision are usually 

negligible for image data)

Combination effects when data 
representing different times are 

combined

Combination effects when 
data representing different 

times are combined

Consistency

Samples / readings 
collected or 

measured in an 
identical manner

Image is captured 
identically for each pixel, 

but medium between 
satellite and ground is not 
consistent; inconsistent 

sensing, light falloff; 
shadows

Classifier strategies are usually 
consistent in their treatment of 

a dataset

Methods for object 
formation may be 

consistent, but often are 
not. Depends on extraction 

strategy

Completeness

Sampling strategy 
covers space, time 

and attribute domains 
adequately

Image is complete, but 
parts of ground may be 

obscured

Completeness depends on the 
classification strategy. (Is all 
the dataset classified or are 

only some classes extracted?)

Depends on extraction 
strategy. Spatial and 

topological inconsistencies 
may arise as a result of 

object formation

Figure 3. Gershon’s taxonomy of imperfect knowledge 
of the information state. [Modified from Gershon (1998); 
reproduced by permission from IEEE © 1998.]
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a characterization of uncertainty as having the 
following components extended from those in 
Thomson et al. (2004).
• Accuracy/error: difference between observa-

tion and reality, usually estimated based on 
knowledge of the measurement/estimation 
device and of phenomena in the work.

• Precision: exactness of measurement/
estimate, derived from parameters of the 
measurement, estimation device, and/or 
procedure.

• Completeness: extent to which information 
is comprehensive.

• Consistency: extent to which information 
components agree. This is a more general 
definition than that found in formal stan-
dards for spatial data.

• Lineage: conduit through which informa-
tion has passed. This is a complex category 
that has at least the following subcompo-
nents: number of individuals, organiza-
tions, processes through which information 
moves; specification of which individuals, 
organizations, or processes.

• Currency: time span from occurrence 
through information collection/processing 
to use. The certainty that information is 

“current” will be a function of both time 
span and context, e.g., year-old data about 
vehicles parked in a factory loading bay is 
less certain to be current than year-old data 
about location of the factory.

• Credibility: combination of factors such as 
reliability of information source. Certainty 
may be based on past experience, e.g., the 
analyst is correct 85 percent of the time, or 
on categorization of the source, e.g., U.S. 
analyst versus a non-U.S. informant; moti-
vation, experience, or other factors.

• Subjectivity: the extent to which human 
interpretation or judgment is involved in 
information construction. This component 
of uncertainty is, of course, difficult to 
assess—and that assessment will have some 
level of subjectivity.

• Interrelatedness: source independence 
from other information. This is a common 
standard used in the news media to assess 
certainty that a story is authentic.

Thomson et al. (2004) matched these categories 
of uncertainty to the space, time, and attribute 
components of data to produce the typology of 
uncertainty depicted in Table 2, with examples 
indicated for each category. 

Visualizing Uncertainty 
Much of the research focused on visualizing 
uncertainty has been directed to the funda-
mental signification problem of deciding which 
components of a sign-vehicle, or symbol, should 
depict the data and which components should 
depict data uncertainty. A common strategy 
is to start with Bertin’s (1983) visual variables 
and their static, dynamic, and sonic extensions 
(MacEachren 1992; McGranaghan 1993; van 
der Wel et al. 1994). A second focus has been on 
the development of interfaces that are designed 
to allow users to access or suppress uncertainty 
as needed, control how uncertainty is depicted 
when displayed, adjust the visual dominance 
of the depiction, and manipulate the display in 
other ways. In spite of past efforts to categorize 
uncertainty, most approaches to uncertainty 
visualization have treated uncertainty as a 
single attribute of data; thus there is a mismatch 
between efforts to conceptualize and to repre-
sent uncertainty. Slocum et al. (2004), in their 
cartographic text, provide a detailed discussion 
of many of the issues and highlight several 
specific solutions offered by selected authors. 
Our consideration of research on visualizing 
uncertainty complements Slocum’s overview 
by emphasizing and comparing approaches 
from different disciplines.  In keeping with the 
focus of the text, Slocum et al. (2004) emphasize 
cartographic solutions, citing only one non-geo-
graphic research team.

Below we divide discussion of visualization 
methods into two sections. First, fundamental 
aspects of visual representation are considered, 
with the focus on application of the visual variables 
and their combinations. Second, the potential 
of dynamic representation for uncertainty visu-
alization is reviewed, with dynamic interpreted 
to include animated, sonic, and interactive rep-
resentations.

Visual Signification of Uncertain 
Information
The most basic methods of visually representing 
uncertainty are available through direct applica-
tion of Bertin’s (1983) visual variables, following 
guidelines already used in traditional cartogra-
phy. The original set of variables includes loca-
tion, size, color value, grain (often mislabeled as 
texture), color hue, orientation, and shape. In 
work focusing specifically on uncertainty visu-
alization, Davis and Keller (1997) asserted that 
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using color hue, color value, and “texture” are 
the “best candidates” for representing uncertain 
information using static methods. Others have 
also emphasized the creative usage of color attri-
butes to signify uncertainty. Jiang et al. (1995) 
described a technique in which hue, lightness, 
and saturation are manipulated to depict fuzzy 
datasets. According to their approach, hue is 
used to assign nominal categories, saturation 
can confer data values, and lightness or darkness 
is changed to show uncertainty. More recently, 
Hengl (2003) outlined a similar method using 
the hue, saturation, and intensity color model 
to visually depict uncertainty. Hengl’s method 
resulted in uncertain data appearing increas-
ingly white or “pale,” depending on the mag-
nitude of uncertainty. This approach relies on 
manipulation of both saturation and value for 
depicting uncertainty. 

MacEachren (1992) argued for an extended 
set of visual variables to depict uncertainty. 
Specifically, he addressed the potential of four 
methods to signify uncertainty. These were color 
saturation; crispness, split into contour crispness 
and fill clarity; transparency, initially termed fog; 
and resolution of raster images and of vector line 
work. With color saturation (Figure 4), MacEachren 
proposed that map elements with a high level 
of certainty should use pure hues, while those 
with less certain information should use a cor-
respondingly less saturated color, thereby gray-
ing out uncertain areas making their color hue 

“uncertain.” MacEachren also suggests applying 
a general metaphor of “focusing”—using “out of 
focus” depictions for uncertain information and 

“in focus” depictions for certain information. As 
noted, this general metaphor was initially split into 
two components—contour or edge crispness and 

fill clarity—but both apply the strategy of making 
the edge of sign-vehicle elements fuzzy to depict 
uncertainty. The idea of crispness, specifically 
fill clarity, is essentially the same as that used by 
Gershon (1992) who created an application that 
animated through increasingly blurred versions of 
data to signify fuzzy sea-surface temperature data 
(see dynamic representation section below).

MacEachren’s initial application of transparency 
to uncertainty depiction was based on a metaphor 
of fog obscuring our view. From this perspective, 
a transparent atmosphere tells the reader that the 
objects they see depicted on the display, through 
that clear atmosphere, are fairly certain while a 
cloudy atmosphere, through which it is hard to 
see the data representation, indicates uncertain 
information. Drecki (2002), in contrast, proposed 
an “opacity” display for classified, remotely sensed 
images in which integral methods of symbolization 
were used, rather than the visually separable fog 
floating above a data depiction. In this case, he 
argued that it was most logical to consider opaque 
objects to be the certain ones. This alternative 
metaphor may also be appropriate for use of 
transparency with discrete sign-vehicles. With a 
point symbol, a highly transparent object might 
be considered to be an uncertain one, a figment of 
one’s imagination, while a relatively opaque object 
might be considered to be fairly certain, thus real. 
Thus, in Figure 4c, the bottom sign-vehicle may 
be interpreted as the most certain place if the first 
metaphor is assumed. The background data are 
not obscured by the foreground sign-vehicle, thus 
they are certain, while the top sign-vehicle may 
be interpreted as the most certain if the second 
metaphor is assumed and attention is directed to 
the foreground sign-vehicle, which is distinct at 
the top and almost invisible at the bottom. 

Table 2. Typology of uncertainty of geospatial information, (Adapted from (Thomson et al., 2004).

Category Attribute Examples Location Examples Time Examples

Accuracy/error counts, magnitudes coordinates, buildings +/- 1 day
Precision nearest 1000 1 degree once per day

Completeness 75% of people reporting 20% of photos flown 2004 daily/12 missing
Consistency multiple classifiers from / for a place 5 say Mon; 2 say Tues

Lineage transformations #/quality of input sources # of steps
Currency census data age of maps C = Tpresent - Tinfo

Credibility

U.S. analyst interpretation 
of financial records <…> 

informant report of financial 
transaction

direct observation of training 
camp <…> e-mail intercept-
tion with reference to training 

camp

time series air photos indicating 
event time <…> anonymous 

call predicting event time

Subjectivity fact <…> guess local <…> outsider expert <…> trainee
Interrelatedness all info from same author source proximity time proximity
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In complementary research, Pang (2001) described 
the use of glyphs, which are compound point symbols, 
as an alternative method of visually representing 
data plus uncertainty. Glyphs are graphical objects 
through which multiple visual variables can be 
manipulated in order to summarize a wide array 
of data aspects simultaneously. Glyphs have been 
used as representations of data themselves, and 
also as ways to understand temporal series. Pang 
suggests that glyphs are useful for representing 
uncertainty, especially multiple types of uncertainty 
(Figure 5). However, he also cautions that glyphs 
can become visually overwhelming. 

Djurcilov et al. (2002) applied a range of 
methods including transparency, glyphs, and 
other methods to representation of uncertainty 
in 3-dimensional renderings of model-derived 
ocean data. They used Monte-Carlo simulations 
to generate the potential variance for each point 
in the data field. The modeled ocean data and 
these variance values were then rendered together 
in 3-dimensional data volumes using alternative 
depictions of uncertainty that range from showing 
only those data below a threshold of certainty, an 
idea also implemented by Howard and MacEachren 
(1996), to creating visual effects such as textures 
and noisy spots for those areas in the data which 
are less certain. Also, areas can be rendered more 
or less opaquely, depending on the level of data 
quality, thus creating semi-transparent areas of 
the data field that appear intuitively to be less 
understood than the rest. This strategy is essentially 
the same as proposed by Drecki (2002), but it is 
applied to 3D views. Although their signification 
and interaction methods were flexible, Djurcilov et 
al. (2002) paid little attention to how users can or 
might interact with their rendering method, and 
thus far, no follow-up study has been performed 
to analyze the usability of their approach.

Rather than represent the most likely interpreta-
tion of data and the uncertainty associated with that 
interpretation, an alternative considered by several 
authors is to generate multiple realizations based 
on different processing and/or interpretations of 
data, then use a comparison of the realizations to 
signify uncertainty (Goodchild et al. 1994; Juang 
2004; Unwin 1995). Bastin et al. (2002) applied 
this approach to visualization of Landsat Thematic 
Mapper data quality, specifically using a “fuzzy 
membership” function in order to create multiple 
possible surfaces. 

Most of the uncertainty visualization research 
discussed above includes an implicit assumption that 
users of uncertainty information are homogeneous. 
In contrast, Beard and Mackaness (1993) proposed 

a system that involves three levels of uncertainty 
indicators, based upon the experience and needs 
of the user. Their first level was simply a notifi-
cation of poor data quality, with “poor” defined 
on the basis of a predetermined threshold. The 
second level adds detail about characteristics of the 
uncertainty, specifically the location and type of 
quality conflict. The third level focuses on giving 
users methods for investigating the reasons for 
uncertainty. Another important point brought 
up in this paper is that it is difficult to keep the 
display of data certainty from getting in the way 
of the data themselves, an inherent conflict that 
is a source of frustration for researchers. 

Figure 4. Point symbol sets depicting uncertainty with 
variation in (a) saturation, i.e., colors vary from saturated 
green, bottom, to unsaturated—top; (b) crispness of symbol 
edge—middle; and (c) transparency of symbol—right. In 
(c), transparency is applied to the smaller symbol in the 
foreground.

Figure 5. Glyphs indicating wind direction, magnitude 
and uncertainty.[Figure provided by Alex Pang (2001; 
reproduced by permission.]
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Dynamic Representations for Uncertain 
Information
Among the uncertainty visualization methods 
addressed in the literature, an idea repeated fre-
quently is that users need control over depictions 
of uncertainty. Howard and MacEachren (1996) 
described an interactive environment, called 
R-VIS for reliability visualization, which was 
developed to support exploration of uncertainty 
in interpolated surfaces and volumes derived 
from sample data. They proposed two funda-
mental strategies for interactive visualization of 
uncertainty. One is to use bivariate representa-
tions that depict data and uncertainty together, 
treating uncertainty as a second variable. These 
representations are most useful when users are 
allowed to control which component—data or 
certainty—is visually dominant in ways simi-
lar to the direct manipulation approach that 
Rheingans (1992) proposed for exploring bivar-
iate maps of two data variables. The bivariate 
representations Howard and MacEachren pro-
posed include visually integral methods using 
bivariate color schemes (as shown in Figure 6, 
left panel) and visually separable methods in 
which data and uncertainty are mapped to sym-
bols of different dimensionality—for example, 
data to a smooth or abruptly changing color fill 
and uncertainty to positional or linear features 
layered on top of the data representation. 

The second strategy that Howard and MacEachren 
described is to depict only data, but allow users to 

control an uncertainty threshold above which the 
data are not represented or are represented less 
clearly (Figure 6, right panel). Faiz and Boursier 
(1996) and Drecki (1997) implemented similar 
interactive representations, although the uncer-
tainty levels were stored as metadata or pre-created 
images, rather than being dynamically controlled 
on the fly. More recently, Lucieer and Kraak (2004) 
developed and implemented a set of linked tools 
to enable the exploration of uncertainty in the 
classification of remotely sensed imagery. Their 
environment incorporates dynamic linking and 
brushing to support flexible exploration, the goal 
of  which is to “improve insight into classification 
and uncertainty.”

Howard and MacEachren (1996) made a distinc-
tion between intrinsic and extrinsic methods for 
visualizing uncertainty; this distinction is similar 
to one proposed by (Gershon 1998). Intrinsic 
approaches are those that change appearance of 
an object, while extrinsic approaches use additional 
symbols to provide information about an object. 
Thus, Howard and MacEachren’s use of multiple, 
overlaid symbol dimensions, i.e., area symbols for 
the data and point symbols for data uncertainty, 
is a kind of extrinsic representation (not shown 
here), while color bivariate maps and maps that 
employ user interaction to control how much of 
the data is shown based on their uncertainty are 
both intrinsic.

In a more recent visualization environment 
designed to support decisions about large-scale 
water resource issues, Cliburn et al. (2002) used 
manipulable glyphs to depict uncertainty, thus, 
an extrinsic representation. Specifically, they 
depicted data values, i.e., water balance change 
predictions, with height on a 2.5D mesh surface 
and the uncertainty in those values, based on 
the range of predictions from different models, 
with vertical bars through the nodes of the mesh 
(Figure 7). The bars are colored purple above the 
predicted surface and orange below, allowing users 
to quickly see regions in which the prediction 
is more likely to be an under- or over-estimate. 
Cliburn et al. (2002) suggested that this type of 
display can become visually confusing and over-
whelming, particularly when extended to depict 
more than the magnitude of spread in estimates 
above and below the value specified. One solu-
tion Cliburn et al. (2002) proposed for helping 
users cope with display complexity is to provide 
interactivity. They allow users to click on a single 
area, or outline a region of the data, and see a 
subset of uncertainty measures for that place or 
set of places. 

Figure 6. Alternative depictions of data (inorganic nitrogen in 
Chesapeake Bay) and uncertainty of data interpolated from 
sparse point samples. Left view shows bivariate depiction 
in which dark=more nitrogen and certainty is depicted 
with a diverging color scheme (blue = most certain and 
red = most uncertain). The right view depicts data in both 
panels (dark = more nitrogen), with the right side of this 
view showing the results of interactive focusing on the most 
certain data.
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In addition to allowing users 
to dynamically interact with the 
uncertainty component of a display, 
several authors have explored the 
potential of dynamic signification 
in the form of animation to high-
light aspects of uncertainty. Fisher 
(1993) was among the first to apply 
animation to uncertainty representa-
tion. His focus was on uncertainty 
in multivariate classification of the 
sort encountered when classifying 
soils and land cover. His approach 
is to map the certainty in soils or 
land cover classification for a grid 
cell, point, or region to the dynamic 
variable of duration. Color was used 
to represent the category of each 
grid cell making up a map display in the dynamic 
representation. The proportion of time that each 
cell is represented by a specific color signifies the 
likelihood that the cell is in that particular category. 
The result is that certain parts of the map have a 
stable color indicating relatively certain classifica-
tion, while uncertain regions change continuously. 
Fisher did not report on the success of his method 
with map users, and instead he called for testing 
of his model in further experimentation. 

While Fisher’s use of animation focused on direct 
representation of uncertainty—long duration in 
one color = high certainty of classification—others 
have emphasized indirect representation of uncer-
tainty through animated sequences of different 
potential realizations. Gershon (1992), in a study 
mentioned above, focused on uncertainty in grid-
ded surfaces that depict continuous distributions 
derived from numerical data samples at points; 
specifically, he considered sea surface tempera-
ture surfaces. He proposed (and demonstrated) 
an animated sequence of realizations that are 
systematically blurred, spatially, by applying an 
increasingly large filter to the grid to dampen 
the impact of local variation. Gershon found that 
the method enhanced key structures in the sea 
surface temperature data, drawing user attention 
to them.

Several other authors have proposed comple-
mentary uses of animation to present sequences 
of alternative realizations, including Ehlschlaeger 
et al. (1997), Davis and Keller (1997), and Bastin 
et al. (2002). Bastin et al. focused on visualization 
to depict fuzzy classification of categorical data. 
Specifically, they proposed generating animated 
series of realizations for specific map/image cat-
egories, e.g., land cover types, with a systematically 

varied “alpha function.” Thus, they generated slices 
across the fuzzy membership function, resulting 
in a dynamic map that builds from a depiction 
of the category core to a depiction that includes 
all locations with any likelihood of being in the 
category. 

Related uses of animation were proposed by 
both Davis and Keller (1997) in a study focused 
on landforms, soils, and site-stability analysis 
and Ehlschlaeger et al. (1997) in a study focused 
on visualizing the impacts of elevation certainty 
on optimal path calculations. Both studies advo-
cated use of interactive animation for presenting 
sequences of complete realizations (rather than 
animated sequences directed to one category at 
a time). Figure 8 shows two frames from one of 
Davis and Keller’s animations constructed to 
depict possible slope stability and its certainty. In 
related work, Ehlschlaeger et al. (1997) sought to 
illustrate the impact of varied quality of Digital 
Elevation Model (DEM) data on the generation 
of potential cost surfaces associated with planning 
a new highway. They generated an array of 250 
possible DEM configurations for a study area in 
southern California and calculated optimal paths 
across each. Then, they developed a method for 
logically ordering the realizations, generated 
additional intermediate representations using 
interpolation between adjacent scenes, and con-
structed an animation that highlights the possible 
paths for a highway and the relative certainty that 
each path is optimal. 

In addition to its use in representation of 
uncertainty in attributes of places, animation has 
been employed as a method for understanding 
uncertainty in space–time processes. For exam-
ple, Fauerbach et al. (1996) applied animation 

Figure 7. Representation of estimated water balance surplus/deficit (using 
a mesh surface) and uncertainty in the estimates (using bars above and 
below the surface). The bars depict the range of a set of model predictions, 
with predictions above the mean shown in purple and those below the 
mean in orange. [After Cliburn et al. (2002); figure supplied by Terry Slocum. 
Reprinted with permission from Elsevier © 2002.]
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to representations of uncertainty in time series 
outputs from meteorological models. Specifically, 
they generated uncertainty surfaces for multiple 
time steps based on differences in predictions 
among multiple models, then combined these in 
animations with data about the real world weather 
that the models were trying to predict. In their 
animation, the predicted pressure surface was 
represented by isolines, and areas of disagree-
ment between models were represented as filled 
isolines behind the data depiction (Figure 9; and 
http://www.geovista.psu.edu/sites/icavis/icavis/febm/
sdhbivar.html). These areas of disagreement change 
dramatically through the animation as it progresses 
over time. As illustrated in Figure 9, the applica-
tion that Fauerbach and colleagues developed was 
web-based, incorporating simple VCR-style con-
trols. The interaction, although limited, allowed 
users to explore the relationships in space and 
time between particular weather events and the 
uncertainty in their prediction. The method was 
found to be particularly useful for helping analysts 
separate spatial and temporal uncertainties in 
predictions. For the data explored, the models had 
similar spatial predictions for the storm trajectory 
but there was considerable disagreement, thus 
uncertainty, about when the storm system would 
be at each location along that trajectory.

Dynamic representation of uncertainty is not 
restricted to only visual channels; several authors 
have proposed sonification as a way to encode 
uncertainty along with data. Fisher (1994) produced 
gridded representations in which users could “scan” 
a variably sized box around an image and hear the 

uncertainty for individual pixels or sets of pixels. 
Uncertainty in this system could be mapped to 
any of the ordered sonic variables identified by 
Krygier (1994). Lodha et al. (1996b) built on this 
idea in a software package called LISTEN that 
allows users to control the sonification of data 
quality. LISTEN provided users with the abil-
ity to select which measures of uncertainty are 
represented by which types of sounds. In order 
to facilitate exploration of data sonically, Lodha 
et al. advocated using a stepping process, from 
points of low to high uncertainty, or vice versa. 
Also, Lodha et al. (1996b) described using multiple 
sounds for multiple types of uncertainty, e.g., pitch 
for different instruments to represent different 
uncertainty components, enabling more than one 
measure to be aurally signified at once. Lodha et 
al. (1996b) claimed their design was successful in 
communicating uncertainty and removing some of 
the visual overload inherent in many visualizations 
of data quality, but they did not present results of 
any user studies in support of this assertion.

Testing Use and Usability 
Most research directed to uncertainty visualiza-
tion has focused on developing representation 
methods or software applications for the display 
of uncertainty, or on developing theory about 
what may work. Much less has been done to 
empirically evaluate whether the proposed 
applications work, or whether the theoretical 
perspectives lead to supportable hypotheses. 
Key empirical contributions made thus far are 

Figure 8. Two frames from an animation that depicts an ordered set of realizations of a maximum likelihood model for 
slope stability, based on variance data. A color scheme is applied that ranges from red (representing unstable slope) 
through yellow to green (representing stable slopes). The realization at left suggested a substantially greater soil stability 
problem on the steep slopes. [Reprinted from David and Keller (1997); reprinted with permission from Elsevier © 1997.
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highlighted below. They provide a starting point 
for a more systematic approach to understand-
ing: (a) the use of information uncertainty in 
information analysis and decision making, and 
(b) the usability of uncertainty representation 
methods and manipulable interfaces for using 
those representations. Here, we will highlight 
key approaches and findings from these past 
empirical studies. We divide discussion into that 
focused on the form of representation and that 
focused on software environments to enable 
access to and application of uncertainty visual-
ization tools.

Understanding and Assessing 
Uncertainty Representation Methods
Several studies have addressed the effectiveness 
of specific uncertainty visualization methods, 
with the earliest studies focused on the core 
visual variables. In one of these, Schweizer and 
Goodchild (1992) examined the effectiveness 
of color value and saturation in representing 
uncertainty on choropleth maps. The experi-
ment tested continuous tone, unclassed bivari-
ate maps, comparing maps in which saturation 
signified data attributes and value signified data 
quality to the reverse. Darkness or color value 
rather than grayness, i.e., color saturation, was 
found to be more consistently associated with 
data quality.
    In subsequent research, MacEachren et al. 
(1998) tested three methods of representing reli-
ability, i.e., certainty, of health data on choropleth 
maps and again found that color saturation, 
counter to their prediction, was less effective 
for signifying uncertainty than the alternatives 
tested. Their study focused on a distinction 
between visually separable and visually integral 
representation methods. Three specific methods 
were developed for combining a choropleth map 
of health data with associated uncertainty. Two 
resulted in visually separable depictions of data 
and data uncertainty: (a) an adjacent display of 
data and binary reliability maps, and (b) a single 
display showing data with a sequential or diverg-
ing color scheme and uncertainty with a texture 
overlay of parallel black and white lines. These 
were compared to a visually integral display 
similar to that used by Schweizer and Goodchild 
(1992). The display depicted data with a sequen-
tial or diverging color scheme and uncertainty 
with a shift in saturation. Results, based on user 
performance on tasks ranging from simple value 
look-up to overall map comparisons, indicated 

that reliability information can be added success-
fully to choropleth maps without inhibiting users’ 
map-reading ability. The visually separable, but 
coincident display using texture was found to be 
most successful. Readers were less able to iden-
tify clusters using the visually integral scheme 
with color saturation depicting uncertainty.

Drecki (2002) also examined methods applied 
to areal data, but his focus was on the represen-
tation of uncertainty in land-cover classifications. 
He evaluated five methods for depicting a clas-
sification result and its certainty in the same repre-
sentation: color saturation; opacity, the inverse of 
transparency; “squares” (a method in which size of 
a square glyph assigned to each location represents 
certainty while color fill represents data); blinking, 
modeled on Fisher’s animation method discussed 
above; and 3D reliability surfaces. Drecki’s (2002) 
empirical comparison of these methods, based 
on 50, mostly student users, found the squares 
method to be most effective, followed by opacity, 
blinking, 3D reliability surfaces, and color satura-
tion, in descending order. Thus, Drecki’s results 
agree with MacEachren et al.’ (1998) in relation to 
color saturation. Interestingly, user preference did 
not match user success—while users agreed that the 
squares method was good, they also had a strong 
preference for the use of color saturation. 

In another study focused on thematic maps 
depicting numerical data, Edwards and Nelson 
(2001) evaluated the effectiveness of four methods 
for signifying uncertainty on graduated circle maps 
on which circle area depicted the data. Methods to 
depict uncertainty were: verbal statement in the 

Figure 9. Screen capture from weather model uncertainty 
animation. [For details, see Fauerbach et al. (1996).]
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legend, certainty diagram in the legend, bivariate 
method using value of circle outline, e. g., lighter 

= less certain, and bivariate method using value of 
circle fill, e.g., light = less certain. Eighty geogra-
phy students completed three kinds of tasks; they 
marked areas of highest data value and highest 
certainty, answered multiple choice questions on 
the variation in data value and certainty, and rated 
their own confidence in responses. Key results 
were that the two bivariate methods resulted in 
more accurate and more confident interpretations 
of certainty, and that the ability to interpret the 
data depicted by circle size was not influenced by 
the uncertainty signification method.

Most empirical efforts to assess different uncer-
tainty representation strategies for maps focus 
on whether map users can interpret the uncer-
tainty representation correctly and the extent to 
which different visual variables support this task. 
Leitner and Buttenfield (2000) went beyond this 
to consider the impact of different representa-
tion methods on map interpretation for decision 
making. Their research complements previous 
research in its focus on the relative appropriate-
ness and effectiveness of specific visual variables, 
directing attention to color value, color satura-
tion, and texture, and on the level of map detail, 
comparable to MacEachren’s “resolution.” 

In a controlled experiment with a regional plan-
ning scenario, they asked 68 student participants 
to use a map to make site decisions for a park 
(easy decision) and an airport (difficult decision), 
while considering the impact of the development 
on surrounding wetlands. Eight test maps of four 
pairs were used that varied in detail within pairs 
and in the method by which uncertainty is signified 
among pairs. Map pairs included a one-category 
map and a three-category map. One pair did not 
depict certainty and the other three pairs each 
relied on a different visual variable to depict cer-
tainty, color value, color saturation, and texture. 
Certain data were represented with darker value, 
finer texture, and greater saturation, respectively. 
Map detail was found to have limited impact on 
results, but the maps that depicted uncertainty 
led to significantly more correct location decisions 
than those that did not. Response times were similar 
with and without uncertainty representation, from 
which the authors conclude that representation of 
uncertainty acts to clarify mapped information rather 
than to make the map cluttered or complex. Maps 
relying on a color value to depict uncertainty were 
used most effectively; results were best with a lighter 
value representing more certain information and a 
darker value representing less certain information. 

The authors also conclude that, if value cannot be used 
to depict certainty, finer texture, followed by higher 
saturation, should be used for more certainty. 

While the impact of uncertainty representation 
on decision making has received some attention, as 
clear from the examples above, the focus has been 
on decision outcomes. The process of decision making 
has been given less attention (see the Challenges 
section below for further discussion). 

Among the few studies that have focused on 
the role of uncertainty in the process of decision 
making is one by Kobus et al. (2001), geared 
toward understanding and improving military 
tactical decision making. In this empirical study, 
the authors used a map-based command post 
simulation exercise to control the amount and 
kinds of information provided to decision makers, 
measure the promptness of decisions, and collect 
performance data. The authors focused specifically 
on differences in decision-making processes and 
outcomes between experts and novices, as those 
differences are influenced by information certainty. 
Certainty was not directly visualized. Instead, it 
was implicit in the kinds and range of informa-
tion provided to participants (who were split into 
two groups that started the exercise at different 
time points in the simulation), with substantially 
more information that was more certain available 
to those starting at the later time point. Among 
the study results, one that is particularly relevant 
here is that experienced officers were faster than 
inexperienced officers at executing a course of 
action under conditions of low certainty but not 
under conditions of high certainty. A factor in this 
difference related to the decision-making process 
was that the experienced officers were better than 
novices at developing situation awareness when 
information certainty was low. The authors interpret 
their findings to suggest that improving displays to 
enhance the process of acquiring situation aware-
ness will improve user performance.

Dynamic Tools to Enable Access to 
and Understanding of Information 
Uncertainty
As the potential of dynamic representations has 
been applied to uncertainty visualization there 
have been many calls for empirical research 
focused on understanding the factors that influ-
ence the relative success of different dynamic 
approaches. However, only a small number of 
studies has been conducted, some focused on 
answering specific questions about dynamic 
representation, e.g., is the mapping of uncer-
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tainty to the dynamic variables of duration or 
frequency understood and effective, and some 
taking a usability approach intended to improve 
decision support environments in which visual-
ization of information uncertainty is a factor. Key 
examples of each are highlighted below.

In one of the first studies focused on dynamic 
visualization of uncertainty, Evans (1997) con-
ducted an empirical study that compared the 
use of color saturation to animated flickering as 
methods to depict uncertainty on land cover maps. 
Evans designed three different depictions of the 
reliability of land use/land cover classification: 
(a) a map where only pixels with high classifica-
tion certainty (at least 95 percent certain) were 
shown; (b) a “static” map where all pixels were 
shown, but with those having high classification 
certainty depicted with highly saturated colors; 
and (c) an animated map that “flickered” back 
and forth between a standard map displaying all 
classified pixels and a map showing only highly 
certain pixels. Users were also given a map that 
did not provide information about data uncertainty. 
Evans assessed the success of the map forms with 
both expert and novice users across a range of 
task types. A majority of the users tested were able 
to understand and apply the information about 
map certainty, regardless of the method of graphic 
presentation, task type, or level of expertise used. 
Most users also judged both the “static” and the 

“flickering” maps to be helpful, although some 
users found flickering to be annoying.

Evans’ (1997) study is one of several to focus 
attention on methods for visualizing land-cover 
classification uncertainty. Blenkinsop et al. (2000) 
extended this work and that by van der Wel et al. 
(1998) to explore methods for visualizing uncer-
tainty that are grounded in fuzzy classification of 
satellite imagery data. Their focus complements 
Bastin et al.’s (2002) study discussed above. Using 
the FLIERS software developed to communicate 
fuzzy set membership of satellite imagery to gen-
eral users and decision makers, Blenkinsop et al. 
compared three methods for representing uncer-
tainty in classified images. These were grayscale 
images where white areas represent more certainty, 
random animation of possible outcomes of image 
classification, and serial animation of the grayscale 
image with user control. A series of map-reading 
questions about classification and certainty were 
posed, along with qualitative questions assessing 
confidence and effectiveness. Results showed that 
subjects were effective in extracting uncertainty from 
pixels with the grayscale and random animations 
techniques but unsuccessful in the serial animation 

technique. Random animation was determined to 
be best for showing the overall uncertainty of an 
image, while grayscale was better for extracting 
specific pixel uncertainty information. Adding 
linked graphic information was also found to 
enhance all three visualization techniques.

In common with several other authors, Aerts et 
al. (2003) focused on the visual variable of the color 
value, which they term lightness, as a method for 
representing uncertainty. Their empirical study 
focused on uncertainty representation in a spa-
tial decision support context. Their approaches to 
uncertainty visualization were implemented within 
SLUETH, an urban growth model designed to aid 
planners, and applied to a case study of growth 
in Santa Barbara, California. Two visualization 
methods were used: a side-by-side static com-
parison of a model and its associated uncertainty, 
similar to that tested by MacEachren et al. (1998), 
and a toggling animation showing model results 
and uncertainty in an alternating four-frame-per-
second sequence, as in Evans (1997). Uncertainty 
was shown in this animation using a color value, 
with a higher value, lighter, meaning less certain. 
Both methods enhanced the efficiency of spatial 
decision making, and participants recognized 
uncertainty with both techniques; however, 72 
percent preferred the static technique and in 
contrast to Evans, those using the static method 
were significantly more accurate than those using 
toggling animation. 

The above studies focused on assessing spe-
cific aspects of dynamic signification of uncer-
tainty, and, in some cases, on comparing those 
dynamic representations to static ones. Cliburn et 
al. (2002) were among the first to apply a broader 
usability-engineering approach, designed to sup-
port development of a decision support system 
that incorporates uncertainty visualization. The 
system and its use of multivariate, manipulable 
glyphs to depict uncertainty was discussed above. 
As part of their approach to developing a useful 
and usable system, Cliburn et al. conducted a user 
task analysis and an assessment of their initial 
prototype decision support tool. One finding from 
this assessment was a general dissatisfaction with 
the clutter that multivariate glyphs depicting 
data and uncertainty generated, despite a flex-
ible, interactive environment that allows users to 
select individual subsections of the display. Some 
users did find the ability to zoom in useful, but 
most had trouble getting past the initial overall 
display in order to decide which area they might 
want to examine separately. 
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Slocum et al. (2003) report on a follow-up to the 
Cliburn et al. (2002) study cited above, in which 
the focus is on usability of their 3D, large-screen 
display system for enabling decision makers to 
visualize uncertainty of the future global water 
balance. Intrinsic and extrinsic methods were 
used to visualize uncertainty in the modeled 
results. An intrinsic method used in this experi-
ment integrated both data depiction and its 
certainty into the color assigned to each place. 
Three aspects of uncertainty are represented by 
the components of RGB, with data magnitudes 
assigned to color values. The extrinsic method 
tested used the height of a glyph, i.e., vertical 
bars, to show uncertainty of the surface and bar 
color to represent four input parameters of the 
model. Usability testing of these two significa-
tion methods showed that water balance experts 
preferred the extrinsic method, while decision 
makers preferred the intrinsic method. In addi-
tion, intrinsic methods were found to be best for 
communicating the “big picture” of uncertainty, 
while extrinsic methods were better for extracting 
specific locational uncertainty information.

Discussion
Uncertainty in geospatial information is a fun-
damental issue that cuts across many disciplines. 
It continues to attract attention as a research 
challenge, as evidenced by a recent National 
Research Council, Board on Mathematical Sciences 
and Their Applications Workshop: Toward Improved 
Visualization of Uncertain Information [http://www
7.nationalacademies.org/bms/visualization_title_
page.html].

Visualization of uncertainty is considered to be 
an important part of a broad strategy to enable 
analysts, decision makers, and others to cope with 
uncertain information. A wide variety of strategies 
has been proposed for uncertainty visualization, 
and there is a growing body of empirical research 
that is providing insights concerning which meth-
ods are effective in different use contexts and for 
which types of tasks. Still, we have only scratched 
the surface of the problem. For example, we cannot 
yet say definitively whether decisions are better if 
uncertainty is visualized or suppressed, or under 
what conditions they are better; nor do we under-
stand the impact of uncertainty visualization on 
the process of analysis or decision making. 

In relation to decision making with uncertain 
information, empirical results thus far provide 
mixed results in relation to the role of visual-
ization. It is well known that experts and lay 

people make decisions differently. For example, 
for map-based decision making in orienteering, 
Crampton (1992) has demonstrated substantial 
strategy differences between expert and novice 
map use. Studies such as Cliburn et al. (2002) 
and Slocum et al. (2003), however, have yielded 
mixed results on expert–novice differences with 
different uncertainty visualization methods. It does 
appear that experts and novices may incorporate 
uncertainty into their decision-making processes 
differently. However, beyond this, existing research 
provides conflicting reports as to whether or not 
inclusion of uncertainty information is generally 
helpful and whether its helpfulness differs between 
expert and novice users. When included, there is 
little agreement in the literature about the best 
way to represent uncertainty. Vastly different 
methods have been suggested by many people. 
A great number of these methods seem to have 
potential for displaying attribute certainty on static 
and dynamic data representations, but only a few 
of them have been empirically assessed and the 
results have not been studied in depth, e.g., with 
the exception of color saturation and color value, 
most methods for depicting uncertainty visually 
have been tested in only a single narrow study, 
if at all.

There is considerable potential, we believe, to 
build upon the multidisciplinary base of knowl-
edge represented by the research reviewed here. 
Progress toward an effective use of visualization 
for coping with uncertainty in geospatial infor-
mation will be enabled by a clear articulation of 
important challenges. In the next section, we offer 
our perspective on these challenges.

Challenges 
Visualization of uncertainty, even when the 
focus is on geospatial information and deci-
sion making, is an interdisciplinary problem. 
Based on our review and synthesis of literature 
on uncertainty visualization and related issues, 
we identify seven core challenges that will 
require interdisciplinary efforts to meet. These 
challenges relate to users and their informa-
tion needs, as well as to methods and tools for 
making information uncertainty accessible and 
useful. Each challenge is outlined below, briefly.
1. Understanding the components of uncertainty and 

their relationships to domains, users, and informa-
tion needs—Although there have been attempts 
to develop typologies of uncertainty, we know 
little about the range in conceptualization of 
uncertainty across domains of practice, across 
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data analysis and decision-making tasks, or 
across individuals. Most of the reported work 
has focused on more concrete uncertainties, 
such as uncertainty about the accuracy of 
location or time specifications, while limited 
attention has been given to abstract forms 
of uncertainty, such as those dealing with 
consistency and completeness. It would also 
be useful to study the prevalence and impact 
of different components by domain, under-
standing that these may be very different. A 
component that is very rare may still be highly 
impactful when it occurs. In addition, these 
components have interrelationships that may 
again differ by domain. For example, cred-
ibility of evidence is qualitatively different in 
the domains of intelligence analysis, where 
credibility may be a subjective decision about 
an individual informant, and cancer epide-
miology, where credibility may be based on 
defined, quantitative standards for rating 
state cancer registries.

2. Understanding how knowledge of information 
uncertainty influences information analysis, decision 
making, and decision outcomes—In spite of con-
siderable attention given to uncertainty visual-
ization there has been little effort to assess the 
impact of visual depictions of uncertainty on 
work with information. Even the basic ques-
tion of whether decision outcomes change in 
the face of an explicit depiction of uncertainty 
remains largely unanswered. A starting point 
here is to build upon the large body of work 
done on the process of decision making gen-
erally, and decision making under uncertainty 
specifically, in order to develop formal and 
testable models of the role of visual, external 
display of uncertainty in the decision-making 
process. Recent theoretical and empirical 
work in distributed/external cognition is likely 
to be relevant here (Hutchins 1996; Scaife and 
Rogers 1996). 

3. Understanding how (or whether) uncertainty 
visualization aids exploratory analysis—Most of 
the empirical evaluations reported in this 
paper address visualization used to present 
information for a particular decision, such 
as the location of an airport. However, visu-
alization is commonly used for exploratory 
analysis where there is no single question to 
be answered; rather the user is seeking to 
glean insights from the data. A core ques-
tion here is how the portrayal and interaction 
with uncertainty can help the user better find 
and assess these insights. Related questions 

are when uncertainty should be considered 
during exploratory analysis, how representa-
tion of uncertainty influences the process of 
data exploration, and whether the outcomes 
of exploration are different and better when 
data uncertainty is explicitly visualized.

4. Developing methods for capturing and encoding 
analysts’ or decision makers’ uncertainty—When 
uncertainty is associated with parameters of 
measurement (e.g., error estimates for con-
tour lines or feature position on topographic 
maps), uncertainty estimates are typically a 
bi-product of data processing and are usu-
ally numerical. When uncertainty is based on 
human judgment, e.g., as is typical for intel-
ligence analysis or crisis management, then a 
fundamental problem that underlies incorpo-
ration of uncertainty in analysis and decision 
making is its capture and encoding as part of 
the information compilation and integration 
process. How can we estimate uncertainties 
without either undue burden on the user or 
skewed results due to uneven data entry?

5. Developing representation methods for depicting 
multiple kinds of uncertainty—Although most 
research dealing with uncertainty visualization 
has focused on representation, comprehensive 
guidelines for representing uncertainty do not 
yet exist. Some recommendations for encod-
ing have been proposed (e.g., Buttenfield 
1993), although little has been done to 
address the challenge of depicting multiple 
forms of uncertainty in the same display. As 
discussed in the section on typologies, uncer-
tainty comes in many forms and applies to all 
kinds of data, e.g., to spatial, temporal, or 
attribute data. The categories of uncertainty 
are often interdependent, and the category 
boundaries are often hard to delineate. These 
factors exacerbate the already difficult chal-
lenge of signifying uncertainty in ways that 
do not prevent users from understanding the 
data of interest.

6. Developing methods and tools for interacting with 
uncertainty depictions—In spite of growing 
attention to interactivity as a fundamental 
component of visualization environments, 
limited attention in research on uncertainty 
visualization has been directed to capitalizing 
upon recent advances in direct manipulation 
interfaces (e.g., brushing, linking, dynamic 
query, conditioning). Similarly, the implica-
tions of user control over uncertainty repre-
sentation have typically not been considered. 
This is an issue relevant to visualization in gen-
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eral, since we lack the conceptual frameworks 
for understanding interactive representations 
that we have developed over the years for data 
representations. While cartographic and visu-
alization textbooks increasingly include guide-
lines for matching symbolization types to data, 
few similar guidelines have been developed 
for matching interaction types to tasks.

7. Assessing the usability and utility of uncertainty 
capture, representation, and interaction methods 
and tools—Making progress toward the chal-
lenges identified above requires research on 
utility and usability of uncertainty representa-
tions. To accomplish this, we need progress 
toward two additional challenges: new empiri-
cal methods are needed to study the use of 
highly interactive display forms; and new 
empirical methods are needed for studying 
the role of visual representation as an input 
to strategies for addressing ill-structured 
problems. Additionally, it is worth focusing as 
much attention on the integrated and situated 
usage of uncertainty in real world analysis as 
has been traditionally placed on identifying 
effective techniques in and of themselves. 
Empirical usability evaluation of systems is 
described in several sources (Shneiderman 
1998). However, current methods were devel-
oped for assessing performance on relatively 
well defined task (e.g., information retrieval), 
rather than for evaluating success of tools in 
support of ill-defined tasks, e.g., interactive 
visualization applied to analysis or decision 
making. Further, the commonly recommended 
metrics, such as error rates and time-to-task 
completion are less helpful for evaluating the 
utility of a visualization approach as opposed 
to its usability. In one example, recent work 
by the National Institute of Standards and 
Technology (NIST) has proposed candidate 
measures for assessing the impact of tools on 
complex information analysis tasks (Morse et 
al. 2005). 
Uncertainty is a fundamental issue for informa-

tion analysis and decision making within contexts 
ranging from personal decisions about optimal 
travel routes, through business decisions about 
facility locations, to strategic decisions about 
sending U.S. troops overseas. The cost of poor 
decisions is often high, thus efforts to develop 
strategies for visualizing uncertainty in information 
and in analytic outcomes have been identified as 
research priorities multiple times over the past 
decade or more. However, while we have made 
progress, routine use of uncertainty visualization 

remains rare. Achieving solutions that work in real-
world applications will require new strategies for 
formalizing the kinds of uncertainty that matter 
in decision making, as well as greater attention 
to the processes of analytical reasoning and how 
those processes cope with uncertainty.
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